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ABSTRACT

We propose a nonrigid registration algorithm and apply it

to align pre- and post-chemotherapy colorectal MRI images.

The algorithm combines feature-based and intensity-based

image registration methods. We use local phase, as computed

by monogenic signal, as the feature descriptor, and as the

similarity measure in the registration algorithm, phase mu-

tual information, which is estimated using NP windows, a

non-parametric probability density function (PDF) estimator.

Local deformations are modeled using the polyaffine trans-

formation, which guarantees a smooth and invertible warping

toward high image resolution. The algorithm is implemented

in an adaptive manner, which makes the registration efficient

and reliable. We show encouraging preliminary results and

will include a performance evaluation on fives of cases in the

final paper.

Index Terms— Colorectal Image, Nonrigid Registration,

Local Phase, Mutual Information, Polyaffine Transformation.

1. INTRODUCTION

Colorectal cancer is the third most common form of cancer

in the developed world and causes over 400,000 deaths each

year worldwide. MRI is the primary imaging modality for

the detection and diagnosis of colorectal cancer. Currently,

about 65% of patients are given courses of chemoradiotherapy

(CRT) in order to downstage the tumour prior to the decision

of whether or not to proceed to surgery. More precisely, fol-

lowing CRT, a second set of MRI scans is performed to inform

the questions: did the tumour respond to CRT? If so, what is

the new TNM staging for the tumour? However, due to the

dramatic anatomical changes in the shape and appearance of

the tumour following CRT, it is often difficult for clinicians

to answer these questions. This paper presents an algorithm

for deformable image registration, which we apply to pre- and

post-CRT colorectal MRI images.

A number of methods in the literature have been devised

for mutual information-based nonrigid registration [1]. How-

ever, as reported by Bond and Brady [2], the key problem

in applying these intensity-based methods to colorectal im-

ages is that the algorithms analyze entropy at a single scale

and equate signal complexity with ‘interesting features’. As

a result, the algorithms tend to concentrate upon points that

are locally complex (high entropy) instead of those that are

of the most clinical interest, which are often least varying,

most bland regions of the image, such as the mesorectum and

colorectum. They then developed a graphical representation

of anatomical knowledge relevant for colorectal cancer and a

model of how that anatomy will be changed after CRT, both

of which can be incorporated to guide those intensity-based

algorithms. The resulting registrations were found to be more

accurate on average, and, more importantly more reliable, in

the sense that they were far less likely to converge to local

minima.

Inspired by their work, we propose a nonrigid registration

algorithm for the pre- and post-CRT colorectal MRI images

that combines feature-based and intensity-based image regis-

tration methods. Given a set of interesting points (either pro-

vided by the graphical representation of anatomical knowl-

edge [2] or identified by calculating the local mis-match mea-

sure to particular image regions [3]), the local phase is used

as the image descriptor, and phase mutual information, as es-

timated using the non-parametric probability density function

(PDF) estimator, NP windows, is used as the similarity mea-

sure to capture the feature relationship. We use the polyaffine

transformation, a diffieomorphic transformation, which mixes

several local displacements via an ordinary differential equa-

tion (ODE), to model local deformations. The registration

proceeds in an adaptive manner to reduce computation time

and converge to the final registration. In the following sec-

tion, we present the various detail of our method: image lo-

cal phase, phase mutual information as estimated by NP win-

dows, the polyaffine transformation and the registration algo-

rithm.

2. METHOD

2.1. Local Phase

Intensity is used as the image descriptor for most image reg-

istration methods. Recently, local phase has been proposed

as an image descriptor that better describes image structure

than signal magnitude. Some authors have argued that local
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phase is a good representation for multimodal image registra-

tion [4, 3].

Local phase can be efficiently estimated using the mono-

genic signal [5]. The basic idea is to construct a pair of vector

valued filters that are both odd and distributed with isotropic

energy in the frequency domain. Let I be the image, then

in the space domain, local phase φ can be calculated using

the vector valued filers of h1 and h2 and the bandpass filtered

image g = f ∗ I (where f is the bandpass filter) as:

φ(x, y) = tan−1

(
g√

(h1 ⊗ g)2 + (h2 ⊗ g)2

)
(1)

The local phase is normally interpreted as a qualitative de-

scription of a detected feature, such as the edge or ridge in a

signal.

In equation 1, the quadrature bandpass filter is used to im-

prove the spatial localization and the local phase is estimated

in a small spatial span and over a narrow range of frequen-

cies. One should be careful to choose a zero mean bandpass

filter for an affine (or deformable) registration as some band-

passs filters are not affine invariant, which make it difficult

to accurately predict the effect of an increment to the affine

transformation so as to bring about a desired change in phase.

We propose to use the Mellor-Brady filter (a scale invariant

filter) [4] to estimate the local phase, which reduce this prob-

lem significantly. Figure 1 shows the phase estimated from

a colorectal MR image. Note that because of the invariance

to image contrast, the local phase image has largely corrected

the bias magnetic field in the colorectal MR image.

(a) (b)

Fig. 1. Example of local phase representation of an image.
(a): a pre-CRT colorectal image. (b): the local phase image
presentation using the Mellor-Brady Filter at finest scale.

2.2. Phase Mutual Information from NP windows

It is now straightforward to extend the intensity based mutual

information to one based on phase [4]:

MI(φI , φJ) =
∑

P(φI , φJ) ln
( P(φI , φJ)
P(φI)P(φJ)

)
(2)

where P(φI , φJ) is the phase joint probability and P(φI),
P(φJ) is the individual phase probability. Replacing the

intensity-based mutual information with the local phase, one

can detect a meaningful structural relationship between the

local shapes of an image pair.

Recently Kadir and Brady[6] proposed, and Joshi[7] fur-

ther developed, a method to estimate the PDF of a discrete

signal using a continuous representation. The method is based

on the observation that a critically sampled or oversampled

discrete signal can be reconstructed to the original contin-

uous signal if an appropriate interpolation procedure is em-

ployed. Additional information, modelled in the interpolation

method, helps to improve PDF estimation. Dowson et al. [8]

have extended this method to calculate joint PDFs for a pair

of images. We now briefly describe their method.

Consider a pair of 2-dimensional (2D) images. Let Y1

and Y2 denote the intensity variables (or phase variables as

in our method) for the two images. Continuous random vari-

ables X1 and X2 denote positional variables in 2D. We divide

the image into several piecewise sections. The intensity vari-

ables Y1 and Y2 are deterministically related to the positional

variables by half-bilinear interpolation over a piecewise sec-

tion, obtained by joining the centres of three neighbouring

pixels. Next, it is assumed that the positional variables are

uniformly distributed over this piecewise half bilinear region

i.e. fX1,X2(x1, x2) = 1 for 0 ≤ x1, x2 ≤ 1, and x1+x2 ≤ 1,

where f(.) denotes a PDF. Hence the following equations can

be written:

y1(x1, x2) = a1x1+b1x2+c1 y2(x1, x2) = a2x1+b2x2+c2

(3)

x2(y1, y2) =
b1y2 − b2y1 + c1b2 − b1c2

b1a2 − a1b2
(4)

x1(y1, y2) =
a1y2 − a2y1 + c1a2 − a1c2

a1b2 − b1a2
(5)

The joint PDF fY1,Y2 can be calculated by using the transfor-

mation formula for functions of random variables. In particu-

lar,

fY1,Y2(y1, y2) = fX1,X2(x1, x2)|J | (6)

where x1 and x2 are given by Eqns. 4 and 5, and |J | is the

Jacobian and is equal to |1/(a1b2−b1a2)| in this case. There-

fore,

fY1,Y2(y1, y2) =
2

|a1b2 − b1a2| (7)

The joint PDF has constant value inside the region defined by

the constraints on the spatial variables. Depending upon

the particular values of the coefficients (a1, b1, c1) and

(a2, b2, c2), these constraints produce variety of regions in

the joint PDF domain, including triangles, lines, and points.

This is further described in Fig. 2. The joint PDF obtained

over each triplet of pixels is added and normalised to get the

joint PDF of the given pair of images. The marginal PDFs

fY1 and fY2 can be obtained by integrating over the appro-

priate variables. As shown in Fig.2 and compared with the

intensity marginal PDFs, the phase one is relatively flat and
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contains limited information. However, this property leads

to a simplified joint histogram, which is useful for nonrigid

registration.
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Fig. 2. (a): Various regions induced by constraints on the
spatial variables in Eqns. 4 and 5. Shape of these regions
depends upon particular values of the coefficients. Consider
a triplet of intensity values (p1, p2, p3) in the first image and
corresponding intensity values (q1, q2, q3) in the second im-
age. Let (a1, b1, c1) and (a2, b2, c2) be the corresponding co-
efficients in the half bilinear interpolation equations. Then
the left subfigure shows the triangular region induced by the
intensity values when a1b2 − b1a2 �= 0. The right subfigure
shows the linear region when a1b2 − b1a2 = 0 but not all
of the individual coefficient values zero. The third possible
case induces a point when ai’s and bi’s are zero. This case
is not shown here. (b): The intensity (left) and phase (right)
marginal PDFs of a colorectal MRI image.

2.3. Polyaffine Transformation

We assume that the deformation between the pre- and post-

CRT colorectal images is composed of a locally affine trans-

formation. The polyaffine framework is used to obtain a glob-

ally non-rigid transformation to model the deformation that

presents several local behaviours [9]. The idea behind the

polyaffine transformation is to weight the sum of local dis-

placements according to a weight function for each arbitrary

image region:

Dspatial(x, y) =
∑

i wi(x, y)Di(x, y)∑
i wi(x, y)

(8)

where w denotes the weight function for image region i within

an image and D denotes the local displacement in each image

region. The weight function is modeled by a Gaussian func-

tion which acts as a pre-defined shape for each region and

models its influence in the image space. The local displace-

ment modeled by an affine transformation is obtained via an

ODE to guarantee invertibility, since all the transformations

induced by the ODE are reversible. Therefore it can avoid the

‘folding’ effect that a traditional spline-based transformation

tends to produce at the high image resolution. A local mis-

match measure that assesses both local phase mutual infor-

mation and local phase entropy is used to automatically iden-

tify those regions of the image which seem to be maximally

misaligned [10, 3]. In order to remove superfluous degrees

of freedom and avoid the regular grid of control points that

increases the computation, the control point of a polyaffine

transformation is placed at the centre of a maximally mis-

aligned region.

2.4. The Algorithm

A multi-scale framework is implemented to make the reg-

istration faster and to increase the likelihood of finding the

global optimum in terms of phase mutual information by tun-

ing the polyaffine parameter space. Specifically, the source

(pre-CRT) and the floating (post-CRT) images are first de-

composed into the phase representation. From the coarse

scale to the finest scale, the polyaffine affine transformation

parameters (rotation, scaling, shearing and translation) are

found by maximizing the phase mutual information at the

coarser scale. The optimized polyaffine transformation ma-

trix from the finest scale is then applied to warp the floating

image in spatial space. The algorithm can be easily extended

to an adaptive one. This can be achieved by calculating the

local mis-match measure using phase mutual information be-

fore proceeding to next scale. If the global phase mutual in-

formation tends to increase but does not arrive at the user de-

fined threshold, which implies that tuning the parameters of

polyaffine can no longer recover the local deformation, extra

control points need to be placed in the misaligned region for

the higher resolution level.

3. RESULTS

The algorithm was run on a series of 10 small field of view

T2-weighted MR datasets, of which 5 were pre-CRT and 5

were post-CRT (provided by Oxford Radcliffe Hospitals).

Each of our datasets is comprising 512 x 512 x 25 voxels of

size 1mm x 1mm x 3mm. Although the result is shown in 2D

images, the algorithm can be extended to a 3D case.

Fig.3 shows the registration result on one of the patient

datasets. Three anatomical landmarks, the centre of two hip

bones and the coccyx as shown in fig.3(a) and fig.3(b), are

provided by the shape representation [2]. These landmarks

are initialized as the control point of the polyaffine transfor-

mation. From the difference image before and after the regis-

tration, the major spatial misalignments in the hip joints and

the mesorectum are largely corrected, as shown in fig.3(d)
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and fig.3(e). Increasing iterations with a small change of the

polyaffine parameters as shown in Fig.3(f), there observes a

‘high central spike’ which implies that the phase mutual in-

formation is very sensitive to a tiny local change. This also

suggests that the phase-based registrations are able to capture

feature relationship that is generally not available in intensity-

based methods.

(a) (b) (c)

(d) (e)
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Fig. 3. The pre-CRT (a) and post-CRT (b) colorectal MRI
images superimposed with the anatomical landmarks pro-
vided by the graphical representation [2]. (c):the aligned (or
warped) post-CRT colorectal image. (d): the difference image
before the registration. (e):the difference image after the reg-
istration and red arrows show the major spatial corrections.
(f):phase mutual information vs iteration curve.

Validation of registration accuracy is a difficult task, be-

cause ground truth is not generally available. In colorectal

image registration, a global measure of registration accuracy

is not really what is required; the main interest is the target

registration error in the mesorectal region. We use a set of

the anatomical landmarks provided by the graphical repre-

sentation [2] in order to validate the registration. We stress

that these landmarks are NOT available to the registration

algorithm; but to assess its performance. These identified

anatomical landmarks can be overlaid to a temporally aligned

post-CRT image to directly measure the target registration er-

ror(TRE). As shown in Table 1, the root mean square (RMS)

TRE of five datasets was 2.92±0.23mm.

Patients 1 2 3 4 5 Mean

(mm) 2.98 2.99 3.17 2.74 2.68 2.92

Table 1. The registration accuracy of five patient datasets

4. DISCUSSION

In this paper, a nonrigid registration of the pre- and post-

CRT colorectal MR images has been proposed. The result

has shown an accurate registration to particular anatomical re-

gions, such as the hip bones and rectum (mesorectum). On an

Intel Pentium dual-core processer with 3.20GHz and 2G ram,

the running time for the registration algorithm in our experi-

ments is less than 6 minutes for 20 iterations. We expect less

computation by developing a faster PDFs estimation with NP

windows. For a more accurate registration in the mesorectum,

the result in our experiments can serve as an initial registra-

tion and then our previous adaptive registration algorithm [3]

can be applied to this clinical region using an image mask.

This is our future research.
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